Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Colorful InAs Nanowire Arrays: From Strong to Weak Absorption with Geometrical Tuning

Identifieur interne : 000603 ( Chine/Analysis ); précédent : 000602; suivant : 000604

Colorful InAs Nanowire Arrays: From Strong to Weak Absorption with Geometrical Tuning

Auteurs : RBID : Pascal:12-0193325

Descripteurs français

English descriptors

Abstract

One-dimensional nanostructure arrays can show fascinatingly different, tunable optical response compared to bulk systems. Here we study theoretically and demonstrate experimentally how to engineer the reflection and absorption of light in epitaxially grown vertical arrays of InAs nanowires (NWs). A striking observation is optically visible colors of the array, which we show can be tuned depending on the geometrical parameters of the array. Specifically, larger diameter NW arrays absorb light more effectively out to a longer wavelength compared to smaller diameter arrays. Thus, controlling the diameter provides a way to tune the optically observable color of an array. We also find that arrays with a larger amount of InAs material reflect less light (or absorb more light) than arrays with less material. On the basis of these two trends, InAs NW arrays can be designed to absorb light either much more or much less efficiently than a thin film of an effective medium containing the same amount of InAs as the NW array. The tunable absorption and low area filling factor of the NW arrays compared to thin film bode well for III-V photovoltaics and photodetection.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0193325

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Colorful InAs Nanowire Arrays: From Strong to Weak Absorption with Geometrical Tuning</title>
<author>
<name sortKey="Wu, Phillip M" uniqKey="Wu P">Phillip M. Wu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Division of Solid State Physics and The Nanometer Structure Consortium (nmC@LU), Lund University, Box 118</s1>
<s2>S - 22100 Lund</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>S - 22100 Lund</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Anttu, Nicklas" uniqKey="Anttu N">Nicklas Anttu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Division of Solid State Physics and The Nanometer Structure Consortium (nmC@LU), Lund University, Box 118</s1>
<s2>S - 22100 Lund</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>S - 22100 Lund</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, H Q" uniqKey="Xu H">H. Q. Xu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Division of Solid State Physics and The Nanometer Structure Consortium (nmC@LU), Lund University, Box 118</s1>
<s2>S - 22100 Lund</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>S - 22100 Lund</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Samuelson, Lars" uniqKey="Samuelson L">Lars Samuelson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Division of Solid State Physics and The Nanometer Structure Consortium (nmC@LU), Lund University, Box 118</s1>
<s2>S - 22100 Lund</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>S - 22100 Lund</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pistol, Mats Erik" uniqKey="Pistol M">Mats-Erik Pistol</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Division of Solid State Physics and The Nanometer Structure Consortium (nmC@LU), Lund University, Box 118</s1>
<s2>S - 22100 Lund</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>S - 22100 Lund</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0193325</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0193325 INIST</idno>
<idno type="RBID">Pascal:12-0193325</idno>
<idno type="wicri:Area/Main/Corpus">001E80</idno>
<idno type="wicri:Area/Main/Repository">001F27</idno>
<idno type="wicri:Area/Chine/Extraction">000603</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arrays</term>
<term>Effective medium model</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Light absorption</term>
<term>Nanostructured materials</term>
<term>Nanowires</term>
<term>One dimensional structure</term>
<term>Photovoltaic cell</term>
<term>Thin films</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Arséniure d'indium</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Réseau(arrangement)</term>
<term>Structure 1 dimension</term>
<term>Absorption lumière</term>
<term>Couche mince</term>
<term>Modèle milieu effectif</term>
<term>Dispositif photovoltaïque</term>
<term>InAs</term>
<term>8107V</term>
<term>8107B</term>
<term>8535</term>
<term>8565</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">One-dimensional nanostructure arrays can show fascinatingly different, tunable optical response compared to bulk systems. Here we study theoretically and demonstrate experimentally how to engineer the reflection and absorption of light in epitaxially grown vertical arrays of InAs nanowires (NWs). A striking observation is optically visible colors of the array, which we show can be tuned depending on the geometrical parameters of the array. Specifically, larger diameter NW arrays absorb light more effectively out to a longer wavelength compared to smaller diameter arrays. Thus, controlling the diameter provides a way to tune the optically observable color of an array. We also find that arrays with a larger amount of InAs material reflect less light (or absorb more light) than arrays with less material. On the basis of these two trends, InAs NW arrays can be designed to absorb light either much more or much less efficiently than a thin film of an effective medium containing the same amount of InAs as the NW array. The tunable absorption and low area filling factor of the NW arrays compared to thin film bode well for III-V photovoltaics and photodetection.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>12</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Colorful InAs Nanowire Arrays: From Strong to Weak Absorption with Geometrical Tuning</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>WU (Phillip M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ANTTU (Nicklas)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>XU (H. Q.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SAMUELSON (Lars)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PISTOL (Mats-Erik)</s1>
</fA11>
<fA14 i1="01">
<s1>Division of Solid State Physics and The Nanometer Structure Consortium (nmC@LU), Lund University, Box 118</s1>
<s2>S - 22100 Lund</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University</s1>
<s2>Beijing 100871</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>1990-1995</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000509673310420</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>29 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0193325</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>One-dimensional nanostructure arrays can show fascinatingly different, tunable optical response compared to bulk systems. Here we study theoretically and demonstrate experimentally how to engineer the reflection and absorption of light in epitaxially grown vertical arrays of InAs nanowires (NWs). A striking observation is optically visible colors of the array, which we show can be tuned depending on the geometrical parameters of the array. Specifically, larger diameter NW arrays absorb light more effectively out to a longer wavelength compared to smaller diameter arrays. Thus, controlling the diameter provides a way to tune the optically observable color of an array. We also find that arrays with a larger amount of InAs material reflect less light (or absorb more light) than arrays with less material. On the basis of these two trends, InAs NW arrays can be designed to absorb light either much more or much less efficiently than a thin film of an effective medium containing the same amount of InAs as the NW array. The tunable absorption and low area filling factor of the NW arrays compared to thin film bode well for III-V photovoltaics and photodetection.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03F18</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Réseau(arrangement)</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Arrays</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Structure 1 dimension</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>One dimensional structure</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Estructura 1 dimensión</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Absorption lumière</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Light absorption</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Modèle milieu effectif</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Effective medium model</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Modelo medio efectivo</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>8535</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>8565</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>149</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000603 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000603 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:12-0193325
   |texte=   Colorful InAs Nanowire Arrays: From Strong to Weak Absorption with Geometrical Tuning
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024